第6讲一元二次函数的图象和性质

2022-08-10 00:00 评论 0 条

**一元二次方程:**只有一个未知数,并且未知数的项的最高系数为2的方程。

学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

发挥教材的多种教学功能。

对称轴为直线x=-b/2a。

若二次函数对定义域内所有x,都有()()fmxfnx+=-,则对称轴为2mnx+=.若二次函数对5、应方程为()0fx=两根为12,xx,则对称轴方程为:122xxx+=4.二次函数2(0)yaxbxca=+的最值(1)在(,)-+上的最值当0a时,miny=()2fba-=244acba-,当0aa-=244acba-(2)在闭区间,mn上的最值轴变区间定二次函数2(0)yaxbxca=+在闭区间,mn上的最值问题,一般情况下,需要分三种情况讨论,依据对称轴与区间的位置关系:2bma,2bnam-,2bna-。

例3、一厂家生产销售某新型节能产品,产品生产成本是168元,销售定价为238元,一位买家向该厂家预订了120件产品,并提出如果产品售价每降低2元,就多订购8件。

个经销商订购了120套这种汽车坐垫,并提出:如果每套坐垫的售价每降低2元,就多订购6套。

一元二次函数解析式的几种形式1.一般式:y=ax2+bx+c(a,b,c为常数,a≠。

版权声明:本文著作权归原作者所有,欢迎分享本文,谢谢支持!
转载请注明:第6讲一元二次函数的图象和性质 | bwin客户端登录 – 最新官网app下载
分类:域名主机 标签:

发表评论


表情